
Milestone 3.3.2 – KML Specification

This Document (M3.3.2) specifies a subset of KML for
display in the Europeana.4D (WP3.3)
interface. Furthermore several recommendations and
requirements for the handling of KML from external
sources, that need to be fulfilled by the implementation.

Please note that this milestone was renamed.

co-funded by the European Union

The project is co-funded by the European Union, through the eContentplus programme

http://ec.europa.eu/econtentplus

EuropeanaConnect is coordinated by the Austrian National Library

http://ec.europa.eu/econtentplus

EuropeanaConnect Milestone 3.3.2 – KML Specification

2 / 11

Distribution

Version Date of sending Name Role in project

0.3 15.10.2010 UGOE – Christian Mahnke Task 3.3 developer

0.4 10.12.2010 UGOE – Christian Mahnke Task 3.3 developer

1.0 15.12.2010 Liferay

Approval

Version Date of approval Name Role in project

1.0 30.11.2010 Vassilis Tzouvaras Developer WP1

Revisions

Version Status Author Date Changes

0.1 Draft UGOE – Christian Mahnke 01.07.2010 Initial Version

0.2 Draft UGOE – Christian Mahnke 15.07.2010

• Added Example
XML fragments

• Added Footnotes
and links

0.3 Draft UGOE – Christian Mahnke 13.10.2010 Final draft

0.4 Draft UGOE – Christian Mahnke 09.12.2010

Added a section describing
the requirements to be
fulfilled by the Europeana
search Engine. (based on
comments by Vassilis
Tzouvaras)

1.0 Final ONBV – VPZ 15.12.2010 Minor layout changes

EuropeanaConnect Milestone M3.3.2 – KML Specification

3 / 11

Table of Contents

Table of Contents ... 3

Introduction... 4

Europeana.4D KML Profile... 4

Root element and basic structure... 4

Content elements.. 5

Groups of data points ... 5

Structure of a data point ... 5

General information about time... 5

General information about places... 6

Descriptions and other metadata (for display).. 7

Advanced features .. 8

Requirements ... 9

Behaviour of the implementation.. 9

Encoding of the KML files ... 9

Unknown elements and attributes .. 9

Missing elements and attributes ... 9

User generated Data... 10

Serialisation requirements .. 10

Short reference... 10

EuropeanaConnect Milestone M3.3.2 – KML Specification

4 / 11

Introduction

To enhance the reusability of the Europeana.4D implementation we looked for a well known and
broadly accepted standard for data interchange. We’ve chosen KML, which was created by
Keyhole, which was acquired later by Google. It’s the basis for all geo related products by
Google. In 2007 version 2.2 became a standard recognized by the Open Geospatial Consortium1.

This decision was accepted during the last ASM in Berlin. Thus the milestone 3.3.2 was renamed
to “KML Specification”.

This document describes the different needed tags, optional tags and several format related
requirement that the implementation has to fulfil. Please note that this specification only defines a
whitelist of elements that the implementation of Europeana.4D should recognize. For the handling
of any other KML (including extension namespaces) please refer to the Section “Requirements”.
In general the elements in this specification only describes elements required by Europeana.4D,
nothing more.

Since this specification describes only a subset of KML a full description is omitted. Please refer
to the official specification (OGC Number 07-147r22). Please note that the official document is
normative. Every confusing or misleading part should be addressed in the scope of this
document. References to the original specification are included; XML elements are referenced
with the namespace prefix(es) used in the original specification(s), they are omitted in the
examples for reasons of readability.

Some features may in future rely on the Google KML extensions3. This may affect mainly the
handling of connection data. Currently these are encoded in a kml:lineString element, which
isn’t completely in the range of the original KML specification. Using the more appropriate
gx:Track element and it’s children certainly would impose restrictions if third party tools except
Google Earth are used.

This and other uses of this extension namespace are omitted for this reason.

Europeana.4D KML Profile

Root element and basic structure

The basic structure of a KML file is described in detail in the official specification. It basically
consists of a root element (kml:kml element) and can host several grouping elements inside.
The root element is described in section 7 of the KML specification. The simplest form is a list of
place marks (kml:Placemark element), these should be grouped using a kml:Document (see
below).

1 Open Geospatial Consortium : http://www.opengeospatial.org/

2 OGC 07-147r2: http://portal.opengeospatial.org/files/?artifact_id=27810

3 Google KML extension namespace specification:
http://code.google.com/apis/kml/documentation/kmlreference.html#kmlextensions

http://www.opengeospatial.org/
http://portal.opengeospatial.org/files/?artifact_id=27810
http://code.google.com/apis/kml/documentation/kmlreference.html#kmlextensions

EuropeanaConnect Milestone M3.3.2 – KML Specification

5 / 11

Content elements

The KML specification defines several XML abstract data types for content elements. This way
it’s either possible to just define a list of kml:Placemark elements below the kml:kml top level
element or to use several elements to group points (see below). The model of KML is described
in section 6 of the specification.

Groups of data points

Multiple data points may be grouped into one parent element. This element is kml:Document.
Grouped data points are also loadable in tools like Google Earth. It’s also possible to omit this
element but this may break compatibility with third party tools. Extended Grouping functionality
like kml:Folder isn’t supported.

Structure of a data point

A single point on the map and / or time line is represented by a kml:Placemark element. This
container groups several sub elements, which are described in the following section. Please note
that the usage of these elements inside Europeana.4D is described here.

Example – The Structure of a very simple kml:Placemark

<Placemark>
<name />
<description />
<Point/>
<TimeStamp />
<Link id="ID" />

</Placemark>

General information about time

A single point in time

In general time is encoded according to the kml:dateTimeType type as described in 16.10 of
the KML specification.

A single point in time is represented by the kml:TimeStamp element, in it’s simplest form it only

contains a kml:when child element.

Example – A simple point in Time

<TimeStamp>
<when>1771</when>

</TimeStamp>

A time span

A timespan is represented by the kml:TimeSpan Element (15.2). This Element contains zero or

one of the following two child elements: kml:begin and kml:end. Additional possible children

Example - A time span

<TimeSpan>
<begin>1771</begin>
<end>1779</end>

EuropeanaConnect Milestone M3.3.2 – KML Specification

6 / 11

</TimeSpan>

Implementation note:

The current implementation uses the contents of the begin element as the point in time for
display, since another feature already uses a similar visualisation. To enable the selection of time
ranges, the display of ranges inside the timeline is shortened to a single point in time.

Encoding of uncertain / partial dates.

In KML dates can be encoded in any format as defined by XML Schema4. These data types
(xsd:gYear, xsd:gYearMonth, xsd:date, xsd:dateTime) can be used to represent
partial and uncertain dates.

Implementation note:

The granularity of display of partial dates depends of the rage of date in the whole data set.

General information about places

Simple coordinates (points)

The simplest possible for of a geo encoded data point is a single point on a map. This point is
represented by the kml:Point element and it’s child element kml:coordinates

Example – A singe point

<Point>
<coordinates>12.35,51.3,0</coordinates>

</Point>

Encoding of uncertain places / areas

Areas can be used to describe uncertain places. Areas can be represented in KML by the
kml:Polygon (which is a sub type of the abstract kml:Geometry) element.

Implementation note:

The implementation is not able to display areas, since there are two other features that are using
the implied visual semantics. The first feature is the selection mode, it lets user create custom
selections of multiple data points. The second feature is the aggregation function, which uses big
circles to represent more then one point. Both features would provoke a “visual clash” with areas,
since it would be hard to distinguish between the different meanings of regions on the map. To
overcome these limitations the implementations picks the first point of a area definition.

Encoding constructed place names

The KML specification has several fields for the encoding of place names. We’ve chosen the
kml:address element as container for place names that are reconstructed from the
coordinates.

Example – A constructed Place name

<kml:address>Leipzig</kml:address>

Implementation note:

4 http://www.w3.org/TR/xmlschema-2/#duration

http://www.w3.org/TR/xmlschema-2/#duration

EuropeanaConnect Milestone M3.3.2 – KML Specification

7 / 11

Constructed place names are used to represent the names of places for creation of aggregated
data points. The name of the points is used to identify several places with slightly different
coordinates. This might happen if the coordinates are from different sources (gazetteers) or
reconstructed for example from a area definition.

They currently encoded by using the kml:address element, please note that this approach isn’t
completely identical to semantic meaning of the original specification

Internationalisation issues

A common problem for the display of place names in the locale of a specific user is the fact that
one place can have different names in different languages. To overcome this problem it’s
possible to use a xml:lang5 attribute for the different names in future implementations.

Implementation note:

Since there currently isn’t any metadata record holding this information and third party
implementations (like Google Earth) support this, the language switch isn’t part of the prototype.
Another approach can be the usage of an kml:ExtentedData element.

Descriptions and other metadata (for display)

Name

Each data point can have a single kml:name, this should be a human understandable (as
opposed to an abstract identifier) short name. It may be the title of a work.

Example – The kml:name element

<name>Die Mitschuldigen</name>

Snippet

It’s possible to define a short textual preview of an object using the kml:Snippet element, this

element also requires the attribute maxLines, which can be used do limit the length of the
displayed text.

Example – A description snippet

<Snippet maxLines="1">
This fragment may contain title, creator and source

institution.
</Snippet>

Implementation note

The current implementation can’t handle rich content inside a kml:Snippet element using a
CData section. This shouldn’t be a problem since several implementations (like Google Earth)
have these limitations as well.

Description

The kml:description may hold a more elaborate description of the data point. This may be a
simple text or rich text encoded in (X)HTML mark up..

5 http://www.w3.org/TR/REC-xml/#sec-lang-tag

http://www.w3.org/TR/REC-xml/#sec-lang-tag

EuropeanaConnect Milestone M3.3.2 – KML Specification

8 / 11

Please note that it’s possible to include a so-called XML CData (character data) section inside the
description field to use HTML formatting tags for formatting purposes. Another use of this
technique is to include references to images and links this way.

Example – A “complex” description:

<description><![CDATA[
<a href='http://flickr.com/photos/33917831@N00/4297186102'

title='Giant Evil Clown Head' target='_blank'>
<img alt='Giant Evil Clown Head'

src='http://farm3.static.flickr.com/2740/4297186102_314dce
bbf8_t.jpg' />

]]></description>

Links

Links should be included inside the narrative description (see kml:description above) of a

singe data point using a simple html:a element.

Implementation note:

The kml:Link element can be used to reference external KML files, but since the is currently no
use case for this feature, it isn’t supported by Europeana.4D.

Icons and small preview images

KML allows the use small preview images or icons for each kml:Placemark element (as part of

the kml:Icon element). Additionally html:img elements can be used inside the description

(see kml:description above) of a data point.

Example

See the example for a complex description.

Implementation note:

Additional icons are currently only supported by the part of the Open Layers Library (map
functionality), not by the data table.

Advanced features

Connections and Trails

Connections and Trails can be represented with the kml:LineString element.

They could also have been represented by the help of the Google KML namespace extension
(see introduction), but for compatibility this approach wasn’t taken.

The kml:tessellate element is used to pin the selection to the ground level, it’s included for
reference only.

Example – A connection (simplified)

<LineString>
<tessellate>1</tessellate>
<coordinates>

EuropeanaConnect Milestone M3.3.2 – KML Specification

9 / 11

1.949057931391283,47.50867638651865,0
2.089607152800692,47.84437381872774,0

</coordinates>
</LineString>

Implementation note:

Since connections are created during run time, depending on the user input, they can’t be loaded.
They are only serializable.

Selections

Selections may be encoded by geometric shapes like circles or polygons. In technical terms all
shapes are represented using a kml:Polygon element (and its children, see example below).

The kml:tessellate element is used to pin the selection to the ground level, it’s included for
reference only.

Example – A selection represented as polygons (simplified)

<Polygon>
<tessellate>1</tessellate>
<outerBoundaryIs>

<LinearRing>
<coordinates>

21.12674752439695,50.45904731364891,0
21.07456391351959,50.34026176935406,0
8.214235333732416,49.17002918741375,0

</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

Implementation note:

Since selections are created on runtime of the application they are currently not loadable. They
are only serializable.

Requirements

This section describes the requirement to be fulfilled by the implementation of the Europeana.4D
interface on the one hand and by the Europeana search engine on the other.

Behaviour of the implementation

Encoding of the KML files

The implementation expects UTF-8 as file encoding for the KML files. The actual behaviour of the
implementation relies on the JavaScript engine of the browser. Using UTF-8 a wide rage of
characters can be supported

Unknown elements and attributes

The implementation should ignore elements and attributes that aren’t covered in this
specification. For example data exported from Google Earth include kml:StyleMap,

EuropeanaConnect Milestone M3.3.2 – KML Specification

10 / 11

kml:Style and kml:LookAt elements and their children. This information’s aren’t displayable
inside the Europeana.4D interface.

Please note that the current (as of October 2010) prototype might not meet this requirement yet.

Missing elements and attributes

Where possible the implementation should be fault tolerant, this also includes the handling of
missing, malformed or plain wrong data. Whenever possible the user should be able to work with
the dataset but also be aware that there might be problems. Where possible warnings should be
handled as in other implementations like Google Earth, which silently ignores unknown extension
namespaces for example.

User generated Data

The Implementation features a tool called “Manual Metadata editing interface”
(Europeana.Connect M3.3.4). This Tool can be used to generate KML fragments (see
kml:Placemark) of KML files including points in time, points on the map and descriptions of

both. These fragments can be aggregated into a singe KML file (see kml:Document).

Serialisation requirements

The implementation is able to serialise data point created at runtime, this includes points in time,
places, connections and selections. These different features are encoded as KML as well. The
used elements are described in the section “Advanced features”.

Behaviour of the Europeana search engine

To be able to use the Europeana.4D implementation the search engine needs to generate KML
files according to this specification. As discussed during the All Staff Meeting in Berlin this will be
done by adding a KML template to the templating engine.

The enrichment of the Europeana metadata is out of scope for this document.

Short reference

Element name Short description KML Specification

kml:Placemark Parent element for a single data point. 9.11

kml:name A short name of a single data point. 9.1.3.1

kml:description A longer description of a data point. 9.1.3.10

kml:Snippet Element to represent preview text for a data point. 16.19

kml:Point Parent element for a definition of a place. 10.3

kml:coordinates Coordinates of a point. 10.5.3.4

kml:TimeStamp Parent element of a point in time. 15.3

kml:when Element to represent a single point in time. 15.3.3.1

kml:TimeSpan Parent element for a time span. 15.2

kml:begin Element to represent the start date of a time stamp. 15.2.3.1

EuropeanaConnect Milestone M3.3.2 – KML Specification

11 / 11

kml:end Element to represent the end date of a time stamp. 15.2.3.2

kml:Document Parent element for multiple place marks. 9.7

kml:tesselleta This elements describes the position relative to the
ground level.

10.6

kml:Polygon Parent Element for polygons. 10.8

